资源类型

期刊论文 155

会议视频 9

年份

2023 12

2022 18

2021 19

2020 15

2019 9

2018 9

2017 9

2016 3

2015 4

2014 6

2013 6

2012 8

2011 5

2010 6

2009 5

2008 7

2007 6

2006 1

2005 2

2004 1

展开 ︾

关键词

高性能制造 3

2021全球十大工程成就 2

Anderson 模型 1

CO2捕集 1

DX桩 1

Mallat算法 1

Meyer小波变换 1

TBM 刀盘设计 1

TBM 效率 1

X射线自由电子激光 1

三点弯曲梁 1

不利荷载 1

不确定性分析 1

二次调节 1

交通荷载 1

交通量 1

亲CO2分离膜 1

低污染 1

低油耗 1

展开 ︾

检索范围:

排序: 展示方式:

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

《机械工程前沿(英文)》 2012年 第7卷 第3期   页码 329-334 doi: 10.1007/s11465-012-0303-x

摘要:

The dynamic mechanical characteristics of excessively heavy-duty cutting were analyzed based on the cutting experiments with 2.25Cr-1Mo-0.25V steel used in hydrogenated cylindrical shells. By investigating the influence of dynamic mechanical characteristics on the tools’ failure in limited heavy-duty cutting processes, the model of dynamic shearing force in the cutting area was established. However, the experimental results showed that the dynamic shear flow stress in the cutting area greatly influenced the tools’ fatigue. The heavy-duty cutting tool was damaged in the form of a shearing fracture. Through a comprehensive analysis of the theory, the critical condition of the tools’ fracture under extreme loading was established.

关键词: extreme loading cutting     shear flow stress     dynamic cutting force     fatigue fracture    

Initiation and propagation laws of the glass cracks in specimens subjected to normal loading under the

WAN Zhen-ping, LIU Ya-jun, TANG Yong, YE Bang-yan

《机械工程前沿(英文)》 2006年 第1卷 第2期   页码 194-198 doi: 10.1007/s11465-005-0011-x

摘要: With more and more applications of glass in advanced fields of science, the demand for glass machining precision has increased greatly. More and more attention is being paid to glass cutting because precise glass parts with various shapes can be obtained at high efficiency and low cost. To improve the machining precision of part surfaces and to facilitate tool design and cutting parameter selection, the initiation and propagation laws of glass cracks in specimens subjected to normal loading by symmetric wedges were investigated. Research results show that initiation and propagation laws are the same with interior symmetric wedge angles of 30o-120o, while the laws are different with interior symmetric wedge angles equal to or more than "e150o. The relationship between medial crack length and normal loading was also investigated when specimens were indented by symmetrical wedges with interior angles of 30o-120o.

关键词: different     30o-120o     relationship     initiation     cutting parameter    

strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme

《结构与土木工程前沿(英文)》   页码 1310-1325 doi: 10.1007/s11709-023-0997-3

摘要: Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.

关键词: sustainable concrete     fly ash     slay     extreme gradient boosting technique     squirrel search algorithm     parametric analysis    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

气候变暖背景下的极端天气气候事件与防灾减灾

翟盘茂,刘静

《中国工程科学》 2012年 第14卷 第9期   页码 55-63

摘要:

首先概括极端天气气候事件以及“气候极值”的相关定义,并把极端事件分为单要素的极端事件、与天气现象有关的极端事件、多要素极端事件和极端气候事件。在此基础上,总结上述几类极端事件在气候变暖背景下的变化趋势及影响。指出气候变暖背景下我国长江中下游区域强降水事件更趋频繁,我国东部地区高温热浪天气更为明显;东北华北地区干旱趋势增加,尤其在20世纪末期和21世纪初期最为明显;近10年来西南地区干旱频繁发生。为减轻日益增加的重大气象灾害的损失,我国有必要加强高影响极端事件的监测、预警能力建设,同时还必须根据极端天气气候事件变化规律加强工程性防御措施,以防范和应对强降水引发的洪涝灾害和城市渍涝,以及与降水持续不足有关的重大干旱和高温热浪等气象灾害。

关键词: 极端气候指数     高影响     气象灾害     工程    

enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading

Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1531-1544 doi: 10.1007/s11709-020-0675-7

摘要: Some of the current concrete damage plasticity models in the literature employ a single damage variable for both the tension and compression regimes, while a few more advanced models employ two damage variables. Models with a single variable have an inherent difficulty in accounting for the damage accrued due to tensile and compressive actions in appropriately different manners, and their mutual dependencies. In the current models that adopt two damage variables, the independence of these damage variables during cyclic loading results in the failure to capture the effects of tensile damage on the compressive behavior of concrete and vice-versa. This study presents a cyclic model established by extending an existing monotonic constitutive model. The model describes the cyclic behavior of concrete under multiaxial loading conditions and considers the influence of tensile/compressive damage on the compressive/tensile response. The proposed model, dubbed the enhanced concrete damage plasticity model (ECDPM), is an extension of an existing model that combines the theories of classical plasticity and continuum damage mechanics. Unlike most prior studies on models in the same category, the performance of the proposed ECDPM is evaluated using experimental data on concrete specimens at the material level obtained under cyclic multiaxial loading conditions including uniaxial tension and confined compression. The performance of the model is observed to be satisfactory. Furthermore, the superiority of ECDPM over three previously proposed constitutive models is demonstrated through comparisons with the results of a uniaxial tension-compression test and a virtual test.

关键词: damage plasticity model     plain concrete     cyclic loading     multiaxial loading conditions    

Concrete corrosion in wastewater systems: Prediction and sensitivity analysis using advanced extreme

Mohammad ZOUNEMAT-KERMANI, Meysam ALIZAMIR, Zaher Mundher YASEEN, Reinhard HINKELMANN

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 444-460 doi: 10.1007/s11709-021-0697-9

摘要: The implementation of novel machine learning models can contribute remarkably to simulating the degradation of concrete due to environmental factors. This study considers the sulfuric acid corrosive factor in wastewater systems to simulate concrete mass loss using five machine learning models. The models include three different types of extreme learning machines, including the standard, online sequential, and kernel extreme learning machines, in addition to the artificial neural network, classification and regression tree model, and statistical multiple linear regression model. The reported values of concrete mass loss for six different types of concrete are the target values of the machine learning models. The input variability was assessed based on two scenarios prior to the application of the predictive models. For the first assessment, the machine learning models were developed using all the available cement and concrete mixture input variables; the second assessment was conducted based on the gamma test approach, which is a sensitivity analysis technique. Subsequently, the sensitivity analysis of the most effective parameters for concrete corrosion was tested using three different approaches. The adopted methodology attained optimistic and reliable modeling results. The online sequential extreme learning machine model demonstrated superior performance over the other investigated models in predicting the concrete mass loss of different types of concrete.

关键词: sewer systems     environmental engineering     data-driven methods     sensitivity analysis    

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 81-88 doi: 10.1007/s11465-019-0561-y

摘要: Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.

关键词: tool friction     minimum cutting thickness     finite element method     tool edge radius     micro cutting    

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

《机械工程前沿(英文)》 2018年 第13卷 第2期   页码 251-263 doi: 10.1007/s11465-018-0504-z

摘要:

Brittle materials have been widely employed for industrial applications due to their excellent mecha-nical, optical, physical and chemical properties. But obtaining smooth and damage-free surface on brittle materials by traditional machining methods like grinding, lapping and polishing is very costly and extremely time consuming. Ductile mode cutting is a very promising way to achieve high quality and crack-free surfaces of brittle materials. Thus the study of ductile mode cutting of brittle materials has been attracting more and more efforts. This paper provides an overview of ductile mode cutting of brittle materials including ductile nature and plasticity of brittle materials, cutting mechanism, cutting characteristics, molecular dynamic simulation, critical undeformed chip thickness, brittle-ductile transition, subsurface damage, as well as a detailed discussion of ductile mode cutting enhancement. It is believed that ductile mode cutting of brittle materials could be achieved when both crack-free and no subsurface damage are obtained simultaneously.

关键词: ductile mode cutting     brittle materials     critical undeformed chip thickness     brittle-ductile transition     subsurface damage     molecular dynamic simulation    

Cutting performance of surgical electrodes by constructing bionic microstriped structures

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0728-9

摘要: Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.

关键词: surgical electrodes     tissue adhesion     thermal injury     bionic structures     cutting performance     medical tools    

Edge preparation methods for cutting tools: a review

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0766-y

摘要: Edge preparation can remove cutting edge defects, such as burrs, chippings, and grinding marks, generated in the grinding process and improve the cutting performance and service life of tools. Various edge preparation methods have been proposed for different tool matrix materials, geometries, and application requirements. This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development. First, typical edge characterization methods, which associate the microgeometric characteristics of the cutting edge with cutting performance, are briefly introduced. Then, edge preparation methods for cutting tools, in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining, are discussed. New edge preparation methods are explored on the basis of existing processing technologies, and the principles, advantages, and limitations of these methods are systematically summarized and analyzed. Edge preparation methods are classified into two categories: mechanical processing methods and nontraditional processing methods. These methods are compared from the aspects of edge consistency, surface quality, efficiency, processing difficulty, machining cost, and general availability. In this manner, a more intuitive understanding of the characteristics can be gained. Finally, the future development direction of tool edge preparation technology is prospected.

关键词: edge preparation method     preparation principle     cutting edge geometry     edge characterization     tool performance    

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0729-8

摘要: When ultrasonically cutting honeycomb core curved parts, the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface. However, given that the straight blade is a nonstandard tool, the existing computer-aided manufacturing technology cannot directly realize the above action requirement. To solve this problem, this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file, which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade. At the same time, for the multi-solution problem of the rotation axis, the dependent axis rotation minimization algorithm was introduced, and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part. Finally, on the basis of the MATLAB platform, the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled, and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed. The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software, and the simulation machining of the equivalent entity of the honeycomb core can then be realized. The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features. Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition, and the workpieces obtained by machining also meet the corresponding accuracy requirements. Therefore, the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.

关键词: honeycomb core     straight blade     ultrasonic cutting     tool pose     postprocessor    

Improved analytical model for residual stress prediction in orthogonal cutting

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 249-256 doi: 10.1007/s11465-014-0310-1

摘要:

The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann’s model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann’s model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann’s model.

关键词: residual stress     analytical model     orthogonal cutting     cutting force     cutting temperature    

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

标题 作者 时间 类型 操作

Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning

Genghuang HE, Xianli LIU, Fugang YAN

期刊论文

Initiation and propagation laws of the glass cracks in specimens subjected to normal loading under the

WAN Zhen-ping, LIU Ya-jun, TANG Yong, YE Bang-yan

期刊论文

Jianguo He:Ultra-precision Cutting Technology and Equipment toward Extreme Manufacturing(2019年10月10日)

2021年04月23日

会议视频

strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

气候变暖背景下的极端天气气候事件与防灾减灾

翟盘茂,刘静

期刊论文

enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading

Mohammad Reza AZADI KAKAVAND, Ertugrul TACIROGLU

期刊论文

Concrete corrosion in wastewater systems: Prediction and sensitivity analysis using advanced extreme

Mohammad ZOUNEMAT-KERMANI, Meysam ALIZAMIR, Zaher Mundher YASEEN, Reinhard HINKELMANN

期刊论文

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

期刊论文

A review on ductile mode cutting of brittle materials

Elijah Kwabena ANTWI, Kui LIU, Hao WANG

期刊论文

Cutting performance of surgical electrodes by constructing bionic microstriped structures

期刊论文

Edge preparation methods for cutting tools: a review

期刊论文

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

期刊论文

Improved analytical model for residual stress prediction in orthogonal cutting

null

期刊论文

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文